Kernel Spectral Clustering for Big Data Networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Spectral Clustering for Big Data Networks

This paper shows the feasibility of utilizing the Kernel Spectral Clustering (KSC) method for the purpose of community detection in big data networks. KSC employs a primal-dual framework to construct a model. It results in a powerful property of effectively inferring the community affiliation for out-of-sample extensions. The original large kernel matrix cannot fitinto memory. Therefore, we sel...

متن کامل

Optimal Data Projection for Kernel Spectral Clustering

Spectral clustering has taken an important place in the context of pattern recognition, being a good alternative to solve problems with non-linearly separable groups. Because of its unsupervised nature, clustering methods are often parametric, requiring then some initial parameters. Thus, clustering performance is greatly dependent on the selection of those initial parameters. Furthermore, tuni...

متن کامل

Kernel-Based Clustering of Big Data

There has been a rapid increase in the volume of digital data over the recent years. Analysis of this data, popularly known as big data, necessitates highly scalable data analysis techniques. Clustering is an exploratory data analysis tool used to discover the underlying groups and structures in the data. Stateof-the-art scalable clustering algorithms assume “linear separability” of the cluster...

متن کامل

Fast Kernel Matrix Computation for Big Data Clustering

Kernel k-Means is a basis for many state of the art global clustering approaches. When the number of samples grows too big, however, it is extremely time-consuming to compute the entire kernel matrix and it is impossible to store it in the memory of a single computer. The algorithm of Approximate Kernel k-Means has been proposed, which works using only a small part of the kernel matrix. The com...

متن کامل

Spectral Kernel Methods for Clustering

In this paper we introduce new algorithms for unsupervised learning based on the use of a kernel matrix. All the information required by such algorithms is contained in the eigenvectors of the matrix or of closely related matrices. We use two different but related cost functions, the Alignment and the 'cut cost'. The first one is discussed in a companion paper [3], the second one is based on gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2013

ISSN: 1099-4300

DOI: 10.3390/e15051567